# Mathematics of Resilience with Applications to Climate



Kate Meyer, Carleton College Guest Lecture, UMN Math 5490 September 28, 2023

Image: https://link.springer.com/article/10.1007/s10021-021-00737-2



### Collaborators



Mary Lou Zeeman Bowdoin Coll.



#### **Stephen Ligtenberg**



**Torey Lee** 



**McGehee** 



Alanna **Hoyer-Leitzel** Mt. Holyoke Coll.





Ian Klasky

Sarah lams Harvard U.

### Math for environmental decision support?

### Math for environmental decision support?

#### **Resilience** quantification

# Part 1: Resilience frameworks

Part 2: Flow-kick models for quantifying resilience to repeated disturbances

Part 3: Climate applications

# What does Resilience Mean to You?

THINK – PAIR – SHARE

- Being able to **bounce back** from setbacks, learn and grow
- Getting pushed---at what point does it push too far?
- Withstand change from external influence
- Adapt to change

### One take on Resilience:

"[T]he capacity of [a] system to absorb change and disturbances and still retain its basic structure and function"

- Brian Walker and David Salt





MINIREVIEW

### From Metaphor to Measurement: Resilience of What to What?

Steve Carpenter,<sup>1</sup>\* Brian Walker,<sup>7</sup> J. Marty Anderies,<sup>2</sup> and Nick Abel<sup>2</sup>

#### structure and function of system:

- basin of attraction (feedback regime)
- value derived from system



#### disturbance type:

- small / medium / large
- one-time / repeated
- continuous / discrete











Reviewed in Meyer 2016, Nat. Resour. Model. 29(3)





Scheffer et al., 2001, Nature 413

## Resilience of What to What?

measures resilience of attracting state to ...



local return rates

small infrequent, discrete dist.



distance to threshold in state (x) space

large disturbance (exceed basin width?)



distance to threshold in parameter space

continuous disturbances (reshape the stability landscapes); changing environmental factors

### Resilience of What to What?

?

resilience of an attracting state to *repeated* perturbations

# Example: fish population



### Example: fish population

#### Meyer et al. 2018, Nat. Sustain. 1



population growth rate 
$$= \frac{dx}{dt} = x \left(1 - \frac{x}{100}\right) \left(\frac{x}{20} - 1\right)$$

### Two fish populations



# Part 1: Resilience frameworks

# Part 2: Flow-kick models for quantifying resilience to repeated disturbances

Part 3: Climate applications

$$\frac{dx}{dt} = f(x) = x(1-x)$$









Flow-kick map

$$\Phi_{\tau,\kappa}(x) = \varphi(\tau, x) + \kappa$$

















#### Flow-kick harvest of logistic — more frequent





|    | A             | В 👻          | С            |  |
|----|---------------|--------------|--------------|--|
| 1  |               |              |              |  |
| 2  |               | Flow time:   | Kick:        |  |
| 3  |               | 2.5          | -0.6         |  |
| 4  |               |              |              |  |
| 5  | Pop. Size (x) | x after flow | x after kick |  |
| 6  | 1.000         | 1.000        | 0.400        |  |
| 7  | 0.400         | 0.890        | 0.290        |  |
| 8  | 0.290         | 0.833        | 0.233        |  |
| 9  | 0.233         | 0.787        | 0.187        |  |
| 10 | 0.187         | 0.737        | 0.137        |  |
| 11 | 0.137         | 0.660        | 0.060        |  |
| 12 | 0.060         | 0.436        | -0.164       |  |
| 13 | -0.164        | 2.391        | 1.791        |  |
| 14 | 1.791         | 1.038        | 0.438        |  |





$$fx = A7/(A7+(1-A7)*EXP(-$B$3))$$

solution to logistic ODE

|    | А             | В            | С            |           |
|----|---------------|--------------|--------------|-----------|
| 1  |               |              |              |           |
| 2  |               | Flow time:   | Kick:        |           |
| 3  |               | 0.4          | -0.096       |           |
| 4  |               |              |              |           |
| 5  | Pop. Size (x) | x after flow | x after kick | 1.2 -     |
| 6  | 1.000         | 1.000        | 0.904        | 1-        |
| 7  | 0.904         | 0.934        | 0.838        | 0.8 - 111 |
| 8  | 0.838         | 0.885        | 0.789        | 0.6 -     |
| 9  | 0.789         | 0.848        | 0.752        | 0.4 -     |
| 10 | 0.752         | 0.819        | 0.723        | 0.2 -     |
| 11 | 0.723         | 0.796        | 0.700        | 0         |
| 12 | 0.700         | 0.776        | 0.680        |           |
| 13 | 0.680         | 0.761        | 0.665        |           |
| 14 | 0.665         | 0.747        | 0.651        |           |
| 15 | 0.651         | 0.736        | 0.640        |           |
| 16 | 0.640         | 0.726        | 0.630        |           |
| 17 | 0.630         | 0.718        | 0.622        |           |





https://tinyurl.com/fishkicks



#### An analytic solution

Flow-kick map  $\Phi_{\tau,\kappa}(x) = \varphi(\tau,x) + \kappa$ 

Fixed point condition:  $\Phi_{\tau,\kappa}(x) = x$ 

$$\varphi(\tau, x) + \kappa = x$$

$$\frac{x}{x + (1 - x)e^{-\tau}} + \kappa = x$$
:
$$x^{2} + (\kappa + 1)x + \frac{\kappa e^{-\tau}}{1 - e^{-\tau}} = 0$$

$$x = \frac{1}{2} \left[ -\kappa - 1 \pm \sqrt{(\kappa + 1)^{2} - \frac{4\kappa e^{-\tau}}{1 - e^{-\tau}}} \right] \Delta$$

### An analytic solution



### Two fixed points



#### Meyer et al. 2018, Nat. Sustain. 1



#### Meyer et al. 2018, Nat. Sustain. 1



resilience to changes in management strategy

# Part 1: Resilience frameworks

Part 2: Flow-kick models for quantifying resilience to repeated disturbances

Part 3: Climate applications

### Resilience of the AMOC



## Resilience of the AMOC



Illustration: Natalie Renier/WHOI.

### Undisturbed flow dynamics



Salinity anomaly (non-dimensionalized)

### Undisturbed flow dynamics



Salinity anomaly (non-dimensionalized)

### Undisturbed flow dynamics



Salinity anomaly (non-dimensionalized)



Illustration: Natalie Renier/WHOI.

#### Gifford Miller / CU Boulder

Meyer et al. 2018, Nat. Sustain. 1



#### Meyer et al. 2018, Nat. Sustain. 1



#### Meyer et al. 2018, Nat. Sustain. 1



### Beyond basins...

Received: 27 November 2017 Accepted: 5 April 2018

DOI: 10.1111/nrm.12170

WILEY Natural Resource Modeling

### Resilience of socially valued properties of natural systems to repeated disturbance: A framework to support value-laden management decisions

Meyer et al. 2018, Nat. Sustain. 1



### **Computational Approaches**

#### for finding flow-kick fixed points in $\mathbb{R}^n$

Simulate flow-kick trajectories

 → discover (some) stable
 flow-kick fixed points



• Newton's method on fixed point condition  $\Phi_{\tau,\kappa}(x) = x$ (requires numerical approximation of  $D\Phi_{\tau,\kappa}(x)$ )

### **Example: Nonspatial Klausmeier Model**



 $h' - wh^2 - mh$ biomass water

$$w' = -w - wb^2 + rain$$

(continuous r

or kicks  $r\tau$ ) 3 vegetated avg. precip. rate  $(\kappa/\tau)$ barren 0 6 τ

### **Example: Nonspatial Klausmeier Model**



 $b' = \mu b^2 m b$ biomass *w*′ = wa

$$D = WD^{-} - MD$$

$$= -w - wb^{2} + rain$$
(continuous r
or kicks rr)



# Summary

- There is no single way to measure resilience---to gain clarity, ask "resilience of what to what?"
- Flow-kick models quantify resilience of attracting states (or desired states) to regular repeated, discrete disturbances
- Triggers for regime shifts can be unexpected:
  - maintain average disturbance rate but lower frequency
  - maintain kick size, but deliver less frequently







connectedness --->

The adaptive cycle (from Panarchy, edited by Lance H. Gunderson and C.S. Holling: Figure 2-1 (page 34). Copyright © 2002 Island Press.